
Case Study 1:

Computation Complexity

From the Introduction:

The need to be able to measure the complexity of a problem, algorithm or structure, and to obtain
bounds and quantitive relations for complexity arises in more and more sciences: besides computer
science, the traditional branches of mathematics, statistical physics, biology, medicine, social sciences
and engineering are also confronted more and more frequently with this problem. In the approach taken
by computer science, complexity is measured by the quantity of computational resources (time, storage,
program, communication). These notes deal with the foundations of this theory.

Computation theory can basically be divided into three parts of different character. First, the exact
notions of algorithm, time, storage capacity, etc. must be introduced. For this, different mathematical
machine models must be defined, and the time and storage needs of the computations performed on
these need to be clarified (this is generally measured as a function of the size of input). By limiting the
available resources, the range of solvable problems gets narrower; this is how we arrive at different
complexity classes. The most fundamental complexity classes provide important classification even for
the problems arising in classical areas of mathematics; this classification reflects well the practical and
theoretical difficulty of problems. The relation of different machine models to each other also belongs to
this first part of computation theory.

Second, one must determine the resource need of the most important algorithms in various areas of
mathematics, and give efficient algorithms to prove that certain important problems belong to certain
complexity classes. In these notes, we do not strive for completeness in the investigation of concrete
algorithms and problems; this is the task of the corresponding fields of mathematics (combinatorics,
operations research, numerical analysis, number theory).

Third, one must find methods to prove "negative results", i.e. for the proof that some problems are
actually unsolvable under certain resource restrictions. Often, these questions can be formulated by
asking whether some introduced complexity classes are different or empty. This problem area includes
the question whether a problem is algorithmically solvable at all; this question can today be considered
classical, and there are many important results related to it. The majority of algorithmic problems
occurring in practice is, however, such that algorithmic solvability itself is not in question, the question is
only what resources must be used for the solution. Such investigations, addressed to lower bounds, are
very difficult and are still in their infancy. In these notes, we can only give a taste of this sort of result.

It is, finally, worth remarking that if a problem turns out to have only "difficult" solutions, this is not
necessarily a negative result. More and more areas (random number generation, communication
protocols, secret communication, data protection) need problems and structures that are guaranteed to
be complex. These are important areas for the application of complexity theory; from among them, we will
deal with cryptography, the theory of secret communication.

CASE STUDY 2:

Complexity Theory: A Modern Approach

Computational complexity theory has developed rapidly in the past three decades. The list of surprising
and fundamental results proved since 1990 alone could fill a book: these include new probabilistic
definitions of classical complexity classes (IP = PSPACE and the PCP Theorems) and their implications
for the field of approximation algorithms; Shor's algorithm to factor integers using a quantum computer; an
understanding of why current approaches to the famous P versus NP will not be successful; a theory of
derandomization and pseudorandomness based upon computational hardness; and beautiful
constructions of pseudorandom objects such as extractors and expanders.

This book aims to describe such recent achievements of complexity theory in the context of the classical
results. It is intended to be a text and as well as a reference for self-study. This means it must
simultaneously cater to many audiences, and it is carefully designed with that goal. The book will explain
the context in which a certain notion is useful, and why things are defined in a certain way. Examples and
solved exercises accompany key definitions.

The book has three parts and an appendix. Part I covers basic complexity classes; it provides a broad
introduction to the field and covers basically the same ground as Papadimitriou's text from the early
1990s -- but more quickly. Part II covers lowerbounds for concrete computational models; it concerns
lowerbounds on resources required to solve algorithmic tasks on concrete models such as circuits,
decision trees, etc. Part III covers advanced topics; this constitutes the latter half of the book and is
largely devoted to developments since the late 1980s. It includes average case complexity,
derandomization and pseudorandomness, the PCP theorem and hardness of approximation, proof
complexity and quantum computing. Finally, the Appendix outlines mathematical ideas that may be
useful for following certain chapters, especially in parts II and III.

Intended Audience:

This book assumes essentially no computational background (though a slight exposure to computing may
help) and very little mathematical background apart from the ability to understand proofs and some
elementary probability on finite sample spaces. A typical undergraduate course on "Discrete Math" taught
in many math and CS departments should suffice (together with the Appendix).

